MASTER of COMPUTER APPLICATION SECOND SEMESTER COMPUTER ORIENTED NUMERICAL METHODS & STATISTICS MCA - 205

(Use Separate Answer Scripts for Objective & Descriptive)

Duration: 3 hrs.

Full Marks: 70

Du		1 41	i maino. 70
	(<u>PART-A:C</u>	<u>)bjective</u>)	
Tin	ne : 20 min.		Marks : 20
Choose the correct answer from the following:			1×20=20
1.	The general quadrature formula in numeri a. Different c. Unequal	cal integration is of ordinate b. Hypothetical d. None of these	'S
2.	In general quadrature formula for deriving Simpsons one-third rule we put the value of n as		
	a. 1	b. 2	
	c. 3	d. 5	
3.	In general quadrature formula for deriving value of n as a. 2	Simpsons three -eighth rule we b. 4	put the
	c. 3	d. None of these	
4.	What is the degree of the interpolated poly a. 3 c. 5	nomial (1,5), (2,18),(3,37), (4,62) b. 4 d. 2	and (5,93) ?
5.	What is the degree of the interpolated poly a. 3 c. 5	nomial (1,5), (2,18),(3,37), (4,62) b. 4 d. 2	and (5,93) ?
6.	If $f(x)$ be a polynomial of nth degree in x , then the nth difference of $f(x)$ is constant and		
	$\mathbf{a}.\Delta^{(n+1)}f(x)=0$	$\mathbf{b}.\Delta^n f(x)=0$	
	$\mathbf{c.}\ f(x) = 0$	d. None of these.	
7.	The relation between differential operator D and difference operator Δ is		
	$\mathbf{a} \cdot D = \frac{1}{h} \left[\Delta + \frac{\Delta}{2} + \dots \right]$	$D = \frac{1}{h} \left[\Delta - \frac{\mu}{2} + \frac{\mu}{3} - \dots \right]$	
	c. $D = \Delta$	d. D=0	
8.	Which one of the following is not a method	l of interpolation ?	

9. The value of any divided difference is _____ of the order of the arguments. a. Dependent b. Optional **PART-B : Descriptive** c. Independent d. None of these **10.** If the number of observations n is odd, then the median is ------ observation Time: 2 hrs. 40 min. Marks: 50 a. $\left(\frac{n}{2}\right)$ th **b.** $\left(\frac{n+1}{2}\right)$ th d. None of these [Answer question no.1 & any four (4) from the rest] c. 0 11. If the number of observations n is even, then the median is ------ observation. b. $\left(\frac{n}{2}\right)$ th and $\left(\frac{n}{2}+1\right)$ th **1.** Calculate the value of the integral $\int_{4}^{5.2} \log x \, dx$ by Trapezoidal rule, a. $\left(\frac{n}{2}\right)$ th 10 c. $\left(\frac{n+1}{2}\right)$ th and 0 d. None of these Simpson's one -third rule and Simpson's three- eighth rule 12. In Probability, Simple event contains ------ elements. 2. Find the Mean Deviation from the Median for the following Data (Use 10 a. Many b.Two c.Sigle d.Zero Cumulative frequency) 13. The value of the integral $\int_{4}^{5.2} logx \, dx$ by Simpson's $\frac{1}{3}$ rd rule is 21 27 30 35 $x_{i}: 15$ 6 7 8 5 $f_{i}:3$ c.7.32 a. 1.82 **b.**3.46 d. 5.27 14. The formula $I = h[ny_0 + \frac{n^2}{2}\Delta y_0 + (\frac{n^3}{3} - \frac{n^2}{2})\frac{\Delta^2 y_0}{2!} + \cdots]$ is a form of **3.** A dice is thrown . Find the probability P as follows: P(a prime number) 2+2+2+2+(b) P(a number \geq 3) (c) P(a number \leq 1) (d) P(a number> 6) (e) P(a = 2 = 10a. Newton Raphson method b. Regula Falsi method number < 6) c. General Quadrature method d. None of these 15. The formula **4.** Find the solution of the system: 83x+11y-4z=9510 $\int_{x_0}^{x_0+nh} y dx = \frac{h}{6} [2(y_0 + y_n) + 8(y_1 + y_3 + \dots + y_{n-1}) + 4(y_2 + y_4 + \dots + y_{n-2})$ is a 7x+52y+13z=1043x+8y+29z = 71form of using Jacobi and Gauss iterative method. b. Simpson's 1/3 rd Rule a. Trapezoidal rule c. Simpson's 3/8th Rule d. Weddle's Rule 5. A bag contains 20 balls, in which 9 are red, 7 are white and 4 are black 2+2+3+316. When two events A and B are mutually exclusive, then $A \cap B$ is -----balls. A ball is drawn at random. What is the probability that the ball =10d. 2 drawn will be (i) white (ii) black (iii) red or black a. Ø b.0 c. 1 (iv) not black 17. When two events are exhaustive events, then AUB is d.None of these a. 1 b.S c. S-1 6. State fundamental theorem of difference calculus. A third degree 2+8=1018. The value of $P(A)+P(B) - P(A \cap B)$ is equal to polynomial passes through the points (0,-1), (1,1),(2,1) and (3,-2). Find **b.** $P(A \cap B)$ a. P(AUB). the polynomial. c. P(A) d. P(B) 10 7. Given 19. Let E be an event and \vec{E} be its complementary, then the value of the probability of \vec{E} i.e P(\vec{E}) is $log_{10}654 = 2.8156, \ log_{10}658 = 2.8182, \ log_{10}659 = 2.8189, \ log_{10}661 = 2.8$ a. 1+P(E) **b.** P(E) , find log10656. By means of Lagrange's formula prove that c. 1-P(E) d. zero $y_1 = y_3 - .3(y_5 - y_{-3}) + .2(y_{-3} - y_{-5})$ 20. The value of E in calculus of finite difference is b. $I - \Delta$ a. $I \div \Delta$ 8. Evaluate $\int_{0.5}^{0.7} x^{\frac{1}{2}} e^{-x} dx$ using Simpson's 1/3 rd rule dividing the range 10 c. $I \times \Delta$ d. $I + \Delta$ of integration into 4 equal parts. = = *** = =

[2]

Contd...

[3]