MASTER of COMPUTER APPLICATION
 SECOND SEMESTER
 COMPUTER ORIENTED NUMERICAL METHODS \& STATISTICS
 MCA - 205

(Use Separate Answer Scripts for Objective \& Descriptive)
Duration : 3 hrs.
Full Marks: 70
(PART-A: Objective)
Marks : 20
Time : 20 min .

$$
1 \times 20=20
$$

1. The general quadrature formula in numerical integration is of \qquad ordinates
a. Different
b. Hypothetical
c. Unequal
d. None of these
2. In general quadrature formula for deriving Simpsons one-third rule we put the value of n as
a. 1
b. 2
c. 3
d. 5
3. In general quadrature formula for deriving Simpsons three -eighth rule we put the value of n as
a. 2
b. 4
c. 3
d. None of these
4. What is the degree of the interpolated polynomial $(1,5),(2,18),(3,37),(4,62)$ and $(5,93)$?
a. 3
b. 4
c. 5
d. 2
5. What is the degree of the interpolated polynomial $(1,5),(2,18),(3,37),(4,62)$ and $(5,93)$?
a. 3
b. 4
c. 5
d. 2
6. If $f(x)$ be a polynomial of nth degree in x, then the nth difference of $f(x)$ is constant and
a. $\Delta^{(n+1)} f(x)=0$
b. $\Delta^{n} f(x)=0$
c. $f(x)=0$
d. None of these.
7. The relation between differential operator D and difference operator Δ is
a. $D=\frac{1}{h}\left[\Delta+\frac{\Delta^{2}}{2}+..\right]$
b. $D=\frac{1}{h}\left[\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\ldots\right]$
c. $D=\Delta$
d. $D=0$
8. Which one of the following is not a method of interpolation?
a. Graphic method
b. Algebraic method
c. Cauchy method
d. None of these
9. The value of any divided difference is \qquad of the order of the arguments.
a. Dependent b. Optional
c. Independent
d. None of these

[Answer question no. 1 \& any four (4) from the rest]

1. Calculate the value of the integral $\int_{4}^{5.2} \log x d x$ by Trapezoidal rule, Simpson's one -third rule and Simpson's three- eighth rule
2. Find the Mean Deviation from the Median for the following Data (Use

| Cumulative | frequency) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{i}: 15$ | 21 | 27 | 30 | 35 |
| $f_{i}: 3$ | 5 | 6 | 7 | 8 |

3. A dice is thrown. Find the probability P as follows: P (a prime number) $2+2+2+2+$ (b) $\mathrm{P}(\mathrm{a}$ number $\geq 3)$ (c) $\mathrm{P}(\mathrm{a}$ number $\leq 1)$ (d) $\mathrm{P}($ a number>6) (e) $\mathrm{P}(\mathrm{a}$ number < 6)
4. Find the solution of the system: $83 x+11 y-4 z=95$
The formula
$\int_{x_{0}}^{x_{n}+n h} y d x=\frac{h}{6}\left[2\left(y_{0}+y_{n}\right)+8\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)+4\left(y_{2}+y_{4}+\cdots+y_{n-2}\right)\right.$ is a
form of
a. Trapezoidal rule b. Simpson's $1 / 3$ rd Rule
c. Simpson's $3 / 8^{\text {th }}$ Rule
d. Weddle's Rule
5. When two events A and B are mutually exclusive, then $A \cap B$ is ---------
a. \emptyset
b. 0
c. 1
6. When two events are exhaustive events, then AUB is
a. 1
b.S
c. S-1
d.None of these
7. The value of $P(A)+P(B)-P(A \cap B)$ is equal to
a. $\mathrm{P}(\mathrm{AUB})$
b. $P(A \cap B)$
c. $\mathrm{P}(\mathrm{A})$
d. $P(B)$
8. Let E be an event and \bar{E} be its complementary, then the value of the probability of \bar{E} i.e $\mathrm{P}(\bar{E})$ is
a. $1+P(E)$
b. $P(E)$
c. $1-\mathrm{P}(\mathrm{E})$
d. zero
9. The value of E in calculus of finite difference is
a. $I \div \Delta$
b. $I-\Delta$
c. $I \times \Delta$
d. $I+\Delta$

$$
\begin{align*}
& 7 x+52 y+13 z=104 \tag{10}\\
& 3 x+8 y+29 z=71
\end{align*}
$$

using Jacobi and Gauss iterative method.
5. A bag contains 20 balls, in which 9 are red, 7 are white and 4 are black $2+2+3+3$ balls. A ball is drawn at random. What is the probability that the ball $=10$ drawn will be (i) white (ii) black (iii) red or black (iv) not black
6. State fundamental theorem of difference calculus. A third degree $2+8=10$ polynomial passes through the points $(0,-1),(1,1),(2,1)$ and $(3,-2)$. Find the polynomial.
7. Given
$\log _{10} 654=2.8156, \log _{10} 658=2.8182, \log _{10} 659=2.8189, \log _{10} 661=2.8$
, find $\log _{10} 656$. By means of Lagrange's formula prove that $y_{1}=y_{3}-.3\left(y_{5}-y_{-3}\right)+.2\left(y_{-3}-y_{-5}\right)$
8. Evaluate $\int_{0.5}^{0.7} x^{\frac{1}{2}} e^{-x} d x$ using Simpson's $1 / 3$ rd rule dividing the range of integration into 4 equal parts.

