MASTER OF COMPUTER APPLICATION SECOND SEMESTER COMPUTER ORGANIZATION MCA – 202

(Use Separate Answer Scripts for Objective & Descriptive)

Duration: 3 hrs. Full Marks: 70

(PART-A: Objective)

Time : 20 min. Marks : 20

Choose the correct answer from the following:

 $1 \times 20 = 20$

- 1. FPGA means
 - a. Field Programmable Gate Array
 - c. Forward Parallel Gate Array
- b. Forward Programmable Gate Array
- d. Field Parallel Gate Array

- 2. What is mean by ALU
 - a. Arithmetic logic upgrade
 - c. Arithmetic local unsigned

- b. Arithmetic logic unit
- d. Arithmetic logic unsigned
- 3. Which one of the following is not a vectored interrupt?
 - a. TRAP.

b. INTR

c. RST 3.

d. RST 7.5.

- 4. HLT opcode means
 - a. load data to accumulator.
 - c. load accumulator with contents of
 - register.

- b. store result in memory.
- d. end of program.
- 5. Type of ROM which is manufactured without having any initial storage in it is termed

as

a. PROM

b. EROM

c. BROM

- d. DROM
- 6. Access store from which data can be read and can be written on it is classified as
 - a. read only memory

b. random access memory

c. random only memory

- d. read access memory
- 7. Switching from one process to another. This swapping is called a
 - a. Process switch

b. Context switch

c. Exchange

- d. both a and b
- Flash memories have limited number of block's write cycles, these cycles must be at least
 - a. 1000

b. 10,000

c. 100,000

d. 100,000,00

9.	In 32-bit address:	ing mode, addre	ss field is ei	ther 1 byte o	or		
	a. 2 bytes	b. 3 bytes	c. 4 l	pytes	d. 5 bytes		
10.	If a comparing in	struction and br	anch instruc	ction uses so	ome architectu	res, to treat these	
	comparisons cho	oses as					
	a. Error			b. Exceptions			
	c. Special cases		d. All of the above				
	Addressing mod in computers is	e which is set to	index array	s, is applied	to indexed ad	dressing mode,	
	a. Scaled address	ssing mode		b. Register	r indirect addr	essing mode	
	c. Register addr				ate addressing		
12.	Simplest scheme	to handle brancl	hes is to				
	a. Flush pipelinec. Depth of pipeline			b. Freezing	pipeline		
				d. Both a and b			
13.	The DMA transfe	ers are performed	d by a contr	ol circuit cal	lled as		
	a. Device interface			b. DMA controller			
	c. Data controll			d. Overlool			
14.	DMA stands for						
	a. Direct Memor		b. Double Memory Access				
	c. Duplicate Me			d. None of			
15.	Which is not an t	vpe of Interrupts	s				
	a. Vectored) F F		b. Non-Ved	ctored		
	c. Priority			d. Accessib			
16.	After the comple	tion of the DMA	transfer the	processor i	is notified by		
	a. Acknowledge signal			b. Interrupt signal			
	c. WMFC signal	1		d. None of	the above		
17.	The DMA contro	ller has	registers				
	a. 1	b. 2		c. 3	d. 4		
18.	The controller is	connected to the					
	a. Processor BU	S		b. System E	BUS		
	c. External BUS			d. None of the above			
19.	The technique w		er is given c			emory is	
	a. Cycle stealing			b. Memory stealing			
	c. Memory Con			d. Burst mo	ode		
20.	0	the controller ar	e				
	a. 64 bits			b. 34 bits			
	c. 32 bits			d. 16 bits			
				-			

[PART-B : Descriptive]

Time: 2 hrs. 40 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. What is Interrupt? Define Interrupt

10

2. a. What is Direct Memory Access? 5+5=10

b. Expalin the working principle of DMA with neat diagram.

3. a. What is Computer Memory 4+6 = 10

b. Explain different types of Computer Memory.

4. Give the pin-out diagram of 8085 microprocessor with pin details.

10

5. a. What is Instruction format?

5+5=10

b. Expalin one address instruction with the following example:

X=(A+B) * (C+D) * E

6. Write a assembly language program to find 1's compliment of a 6+4=1016 bit number. Write the significance of the steps.

7. a. What is Asynchronous Data Transfer?

4+6=10

b. Explain Source Initiated Handshaking Mechanism.

8. Define RISC & CISC? What is Stack Organization? Explain with a 3+3+4 suitable example. =10

= = *** = =