		REV-00 2018/06 MCA/16/21	
(PART-B : Descriptive	J	MASTER of COMPUTER APPLICATION SECOND SEMESTER DATA STRUCTURE & ALGORITHM MCA - 201	
Time : 2 hrs. 40 min. Marks : 50		(Use Separate Answer Scripts for Objective & Descriptive)	
1 mie . 2 ms. 40 mm.	Warks. 50	Duration : 3 hrs. Full Marks : 70	
[Answer question no.1 & any four (4) from the rest]		(PART-A : Objective)Time : 20 min.Marks : 20	
1. Define Linked List, Array, Queue, Height Balance	d Tree, Stack with 10	Choose the correct answer from the following: 1×20=20	
examples.What is Divide and Conquer method? Write algorith method.	m for binary search 3+7=10	1. Process of removing an element from stack is called a. Create b. Push c. Evalution d. Pop	
3. Write selection sort algorithm. Explain bubble sort m example.	ethod with suitable 5+5=10	 2. Which of the following applications may use a stack? a. A parentheses balancing program. c. Compiler Syntax Analyzer. b. Tracking of local variables at run time. d. All of the mentioned 	
 4. a. Define Binary Search Tree. Explain preorder, post representation of a tree. b. Make AVL tree with the following elements 23, 45 	=10	 3. The postfix form of the expression (A+ B)*(C*D- E)*F / G is? a. AB+ CD*E - FG /** b. AB + CD* E - F **G / c. AB + CD* E - *F *G / d. AB + CDE * - *F *G / 	
 5. What is Time and Space complexity of an algo asymptotic notation. 		 4. Which of the following is not the type of queue? a. Ordinary queue b. Single ended queue c. Circular queue d. Priority queue 	
6. What is spanning tree. Write Kruskal's algorit spanning tree. Explain modified Warshall's algorith with example.		 5. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? a. ABCD b. DCBA c. DCAB d. ABCD 	
 7. a. Define priority queue. Write algorithm to Delet circular queue. b. Write algorithm for Push operation and representation in postfix notation. (a+b)*c-d/e 	3=10	 6. In linked list each node contain minimum of two fields. One field is data field to store the data second field is? a. Pointer to character b. Pointer to integer c. Pointer to node d. Node 	
8. Explain ISAM. What is collision and how can we reso	Solve the collision. $4+6 = 10$	 7. What kind of linked list is best to answer question like "What is the item at position n?" a. Singly linked list b. Doubly linked list c. Circular linked list d. Array implementation of linked list 	
		 8. What are the advantages of arrays? a. Easier to store elements of same data type 	

- b. Used to implement other data structures like stack and queuec. Convenient way to represent matrices as a 2D arrayd. All of the mentioned

= = *** = =

1

P.T.O.

- 9. Where is linear searching used?
 - a. When the list has only a few elements
 - c. Used all the time

b. When performing a single search in an unordered list

- d. Both a and b
- 10. Which of the following is false about a doubly linked list?
 - a. We can navigate in both the directions
 - **b.** It requires more space than a singly linked list
 - c. The insertion and deletion of a node take a bit longer
 - d. None of the mentioned
- **11.** A linear collection of data elements where the linear node is given by means of pointer is called?
 - a. Linked List c. Primitive List

b. Node Listd. None of the mentioned

- 12. What differentiates a circular linked list from a normal linked list?
 - a. You cannot have the 'next' pointer point to null in a circular linked list
 - b. It is faster to traverse the circular linked list
 - c. You may or may not have the 'next' pointer point to null in a circular linked list
 - d. All of the mentioned
- 13. Which of the following application makes use of a circular linked list?

a. Undo operation in a text editorb. Recursive function callsc. Allocating CPU to resourcesd. All of the mentioned

- 14. What is an AVL tree?
 - a. a tree which is balanced and is a height balanced tree
 b. a tree which is unbalanced and is a height balanced tree
 c. a tree with three children
 d. a tree with atmost 3 children
- **15.** Given an empty AVL tree, how would you construct AVL tree when a set of numbers are given without performing any rotations?
 - a. just build the tree with the given input

c. Must have no loops or multiple edges

- b. find the median of the set of elements given, make it as root and construct the tree c. use trial and error
- d. use dynamic programming to build the tree
- 16. Which of the following properties does a simple graph not hold?
 - a. Must be connected

b. Must be unweightedd. All of the mentioned

- 17. Which of the following is not a limitation of binary search algorithm?a. must use a sorted array
 - b. requirement of sorted array is expensive when a lot of insertion and deletions are needed
 - c. there must be a mechanism to access middle element directly
 - d. binary search algorithm is not efficient when the data elements more than 1500
- 18. If the number of records to be sorted is small, then sorting can be efficient.
 - a. Merge b. Heap c. Selection d. Bubble
- **19.** Rather than build a subgraph one edge at a time builds a tree one vertex at a time.
 - a. kruskal's algorithmb. prim's algorithmc. dijkstra algorithmd. bellman ford algorithm
- **20.** The kind of allocation in which the file blocks contain the pointer to the next blocks of file is classified as
 - a. linked allocationc. header allocation
- **b.** indexed allocation **d.** contiguous allocation